
Object-oriented (OO) design as a
software programming technique

has been around almost 40 years,
although it has become prominent in
military and government systems devel-
opment in only the last few years. Its use
has grown from just a programming trick
to a complete approach to analyzing and
solving complex problems.

As with any technology, OO design
has not always been applied successfully.
Literature is full of misapplied OO tech-
niques as well as impractical recommen-
dations. The authors have seen both
good and bad OO programming in large
military systems. This article will try to
enumerate the most common pitfalls and
offer practices that have been shown to
work.

The practices recommended in this
article are motivated by the desire to use
OO technology to its best effect. OO
techniques provide the opportunity to
capture the logic of a complex domain
or problem environment in a structure
that reflects or is congruent with interre-
lationships among actual domain ele-
ments. This structure encapsulates the
impact of volatile requirements and
design decisions, and provides a natural
mapping from requirements to design.
Consequently, the design is flexible, facil-
itating system integration and repeated
adjustments or enhancements to the
implementation during initial develop-
ment and subsequent maintenance.
Therefore, these attributes of congru-
ence and flexibility reduce system life-
cycle costs and are worth striving for
rather than settling for any design that
can be made to work.

Practices the authors have used to
help struggling OO projects include the
following:
• System-wide software architecture.
• Layered software architecture with

domain layer.
• Goal-directed black box use cases.
• Spiral design.
• Architecture and code iterations.
• Spare modeling.
• Experienced OO guides.

These practices have been widely rec-
ommended by many OO experts. The
authors’ experience is that they are just
as valid for complex system development
within government acquisition pro-

grams. The authors have incorporated
many of these recommendations into a
prescriptive methodology [1].

The following sections describe these
practices in more detail. However, to
keep this article within an acceptable
length, it is assumed the reader is famil-
iar with typical development practices
that are referenced during the discussion.

System-Wide Software
Architecture
One of the most effective means of pre-

serving congruence between the domain
and the design is to use OO techniques
to decompose the software across the
entire system. Working from a software
perspective with such a broad scope
yields a unified, system-wide, software
architecture, expressing domain con-
cepts with semantic consistency
throughout the software.

Too often, programs follow past pat-
terns of system design that preclude
good OO design. System designers, too,
readily define logical design components
to match organizational structures, phys-
ical elements of the design, or sub-func-
tions of deep functional analysis per-
formed without sufficient feedback (e.g.,
any) from software design. While these
decompositions may match conveniently
to the specialties of different groups,
correspond to the administrative hierar-
chy of the development team, or enable
easy traceability, they constrain the scope
of any software perspective to individual
boxes, conflict with OO structuring, and
increase the difficulty of maintaining
overall semantic consistency (e.g., consis-
tent interpretation of data) among the
components.

Semantic consistency among differ-
ent parts of a system is extremely impor-
tant. Trying to maintain that consistency
by merely matching interfaces of system
components is not sufficient, especially
if the major logical interfaces are forced
to align with physical interfaces. OO
approaches need to work with the soft-
ware as a whole to define major class
interfaces for flexibility and congruency,
without the imposition of other decom-
positional schemes.

The only way to preserve flexibility
and congruence of software design in
balance with other tradeoffs is for OO
developers to work closely with other
team members during multiple iterations

Effective Practices for Object-Oriented 
System Software Architecting

Rich McCabe and Mike Polen
Systems and Software Consortium

Development programs for software-intensive systems are increasingly attempting to employ object-oriented (OO) techniques
and technologies – including OO design, the Unified Modeling Language (UML), and UML-based modeling and software
development tools – in expectation of achieving greater flexibility, evolution, and productivity. However, these programs fre-
quently experience a number of challenges when they insert OO design into their traditional practices. Unless both develop-
ment organizations and acquisition offices make a thoughtful transition to OO design, they are likely to experience difficul-
ties that may well endanger the anticipated benefits. This article describes some typical pitfalls of OO development and rec-
ommends a number of architectural practices that will help programs avoid or mitigate these dangers.

18 CROSSTALK The Journal of Defense Software Engineering June 2005

“OO techniques provide
the opportunity to

capture the logic of a
complex domain or

problem environment
in a structure that

reflects or is congruent
with interrelationships

among actual
domain elements.”



June 2005 www.stsc.hill.af.mil 19

of the requirements and design.
Although software is malleable enough
to fit into almost any decomposition,
taking for granted the benefits of a sys-
tem-wide OO structure is almost certain
to compromise them.

Layered Software Architecture
With Domain Layer
Grouping related classes into layers is
another technique for managing and
coordinating many classes in large sys-
tems. The term layer is something of a
misnomer in that the layers are not strict-
ly arranged like a cake. However, the
classes in a layer should all deal with
some common aspect of the design and
have limited access to other layers (upper
layers call upon the services of lower lay-
ers but not vice versa). Figure 1 is a rep-
resentative example. Usually, only one or
a few key classes present all the services
of the layer to other layers, the other
classes of the layer are hidden behind
this interface.

One of these layers should be
focused on the domain specifics of the
system and be the key to understanding
the domain. This layer is typically called
the domain layer (or system or business
logic layer), or is named for the particu-
lar domain (e.g., accounting, or battle
management). Classes in this layer are
defined to represent the essential con-
cepts and relationships in the domain in
terms that the subject matter experts
understand [2]. It should have no knowl-
edge of the underlying hardware, com-
munication protocols, operating system
features, or other aspects of the design
known to other layers. The domain layer
is key to the overall understandability
and flexibility of the design.

Typical subsystem partitions are not
equivalent to OO layers and usually chop
up what would correspond to the
domain layer. As discussed in the previ-
ous section, the design is often prema-
turely split into traditional subsystems
before any consideration is given to
overall domain congruence or flexibility.
Frequently, the authors have seen
designs structured in the form of all-
knowing device-centered subsystems,
each containing bits of domain knowl-
edge intertwined with hardware inter-
faces and other types of design knowl-
edge, and each interconnected to all the
others. This kind of design arises from
trying to scale up a simple data pipeline
or thread to a system with multiple, inter-
connected data pipelines. The result is a
fragile, inflexible design with bits of

domain and design knowledge expressed
in multiple locations.

Goal-Directed, Black Box
Use Cases
The use case technique [3], when
applied appropriately, has the advantage
of clarifying the intent of system stake-

holders without unduly presuming the
design. Use cases are a narrative of sys-
tem interaction with external entities.
Best practice structures each use case
around a single goal of a system user or
stakeholder, and treats the system as a
black box with observable behaviors.
Although use cases are a technique for
requirements analysis, their black box
orientation prevents design assumptions
from creeping into requirements.
Furthermore, the emphasis on system
interaction with external entities in
meeting goals helps OO developers
identify essential entities and concepts
in the domain (as discussed in the previ-
ous section).

Like any technique, use cases can be
misapplied as in the following:
• Although use cases can be applied at

different levels (notably to analyze
systems containing people: at the

outer level to express system interac-
tions with external actors, and at an
inner level to express interactions of
the hardware/software with people
within the system), it is a mistake to
mix levels.

• Ignoring stakeholder goals as the
organizing principle for use cases
leads to haphazard narratives that do
not clearly reveal how the system
produces value for the stakeholders.

• Another common mistake is failing
to abstract away from details of the
interfaces, data, or interaction proto-
cols in the use case narrative, or oth-
erwise attempting to develop com-
plete use cases that cover every possi-
ble detail or scenario. This treatment
leads to a proliferation of endless use
cases of rapidly diminishing value.
Use cases should be employed judi-

ciously to illuminate key system behav-
iors, not to exhaustively document
requirements. The opposite extreme,
treating use cases as no more than the
Unified Modeling Language (UML) use
case diagram, is pointless.

Often, use cases are ignored entirely.
True, use cases need to be augmented
with other requirements techniques, but
use cases provide a unique and impor-
tant perspective.

Spiral Design
A spiral approach to OO design general-
ly yields the best results. Here, a spiral
approach means that the designers begin
by addressing just a few key issues in an
initial design, and then incrementally
address other concerns and complica-
tions in multiple revisions. Initially,
developers make only a rough allocation

Figure 1: Generic Layers

Effective Practices for Object-Oriented System Software Architecting

“Too often, programs
follow past patterns

of system design
that preclude good

OO design.”



of responsibilities to components, and
gradually resolve the details as design
issues are introduced and decided. Here
is a partial ordering of issues that
appears to work well:
• Domain congruence and flexibility.
• Mapping to physical architecture.
• System attributes.
• Concurrency.

Of course, program-specific circum-
stances impact this general scheme such
as whether the development team has
previously developed OO designs for
similar systems.

Many programs attempt to directly
create a design that simultaneously
addresses all system issues and provides
detailed interface descriptions as well.
This invariably leads to an overly com-
plicated design because the designer has
too many concerns to juggle at once.
The mental overload causes many errors
and results in a big ball of mud [4].
Instead, the designers need to start with
a simple yet admittedly inadequate
design and work in complications one at
a time, rebalancing earlier design ele-
ments as necessary.

Domain Congruence and
Flexibility
The initial design captures the essentials
of the domain to ensure flexibility and
understandability (see previous section
“Layered Software Architecture With
Domain Layer”). The intent is to pre-
serve the flexibility of the initial design
as much as possible, but compromise it
where necessary to address other
demands.

Mapping to Physical Architecture
Multi-processor architectures potential-
ly introduce a number of complications
best delayed until the domain essentials
have been identified. Assignment of
functionality to various processors has
subtle implications for both timing and
reliability. Trying to force these deci-
sions too early before more information
is available about other aspects of the
design (and even the implementation) is
both difficult and dangerous, and tends
to emphasize physical interfaces over
logical (domain) interfaces. Delaying
such decisions is usually advantageous,
especially when facilitated by infrastruc-
ture technologies such as Common
Object Request Broker Architecture
(CORBA).

Similarly, OO designs typically encap-
sulate hardware interfaces inside classes,
protecting the rest of the system from
volatilities in the device interfaces. This

technique usually relegates many of the
decisions in allocating requirements to soft-
ware or hardware as a secondary concern.

System Attributes
Timeliness, reliability, safety, security,
and other such system attributes are dif-
ficult to address individually and often
have tricky interdependencies.
Designers tend to begin with their
greatest concern (e.g., critical timing
paths) and orient the design toward that
aspect. In the authors’ experience,
designing for flexibility first and adjust-
ing for timeliness as proves necessary is
much more effective than designing first
for timeliness and subsequently for flex-
ibility. Similarly, designers need a pre-

liminary design combining both hard-
ware and software before they can
meaningfully analyze the impact of
other attributes.

Concurrency
Concurrency decisions are another area
best left until later. Concurrency can
add tremendous design complexity.
Start with as few concurrent elements
that will possibly work (one is often the
best starting point). Add new concur-
rent elements only after a performance
test or real-time analysis has shown that
the implementation will not work. The
authors have seen a narrow design focus
on timeliness lead to a (unsuccessful)
system design with more than 100 con-
current elements on a single processor.

Architecture and Code Iterations
Although architectural analysis is
important, systems today are too com-
plex to rely solely on analysis to ensure

that a design will exhibit the expected
attributes. The flexibility of a design
hinges on too many details that only
become apparent with coding. Yet these
coding details can have implications for
the larger design.

Fortunately, software is well-suited to
evolutionary development. Where testing
and configuration management discipline
is continuously applied, multiple itera-
tions of design, code, and test (in parallel
with deepening requirements analysis) are
more productive and effective than a
waterfall process. Coding the most critical
or highest-risk portions of the design val-
idates the solution approach. A robust,
flexible design is discovered and becomes
increasingly stable through multiple itera-
tions. This practice also fits well with spi-
ral design.

Even though the waterfall process is
rarely, if ever, suitable to manage the risks
of complex system development, it is still
prevalent in government contracting.
With the recent release of Department of
Defense 5000 [5], the government is try-
ing to rectify the traditional bias toward
waterfall-planned programs, but the
waterfall process remains predominant.
Typically, teams doing OO development
today within a waterfall process spend
their time creating, editing, and reviewing
UML diagrams. Unfortunately, translat-
ing from UML diagrams into code is not
automatic and often exposes major flaws
in the design.

When designers are inexperienced in
both OO programming and the underly-
ing infrastructure (such as CORBA) the
resulting designs are often misguided or
simply infeasible to implement. A com-
mon design defect is attempting to man-
age classes with a large number of
objects under tight timing considerations.
The kind of schedule pressure created by
the emphasis of a waterfall process on
getting everything right the first time
leads developers to opt for the most expe-
dient fix in code, rather than rethinking
the design.

Generally, programs, as reflected in
their plans and practices, do not appreci-
ate just how much good design depends
on feedback from prototypes, or prefer-
ably, from early implementations of par-
tial or simplified designs. As program
schedules become more compressed,
development teams are, in fact, coding
and designing simultaneously. However,
rather than plan for rapid design and
code iterations in an open and well-man-
aged fashion, they often attempt to mask
this reality beneath a simplified, waterfall
model being projected for the program

20 CROSSTALK The Journal of Defense Software Engineering June 2005

Reality Computing

“In the authors’
experience, designing
for flexibility first and

adjusting for timeliness
as proves necessary

is much more effective
than designing first
for timeliness and
subsequently for 

flexibility.”



June 2005 www.stsc.hill.af.mil 21

Effective Practices for Object-Oriented System Software Architecting

and, consequently, create chaos rather
than success.

Spare Modeling
Models can be a very powerful tool in
working on a complex problem. Formal
models (see [6]) can support automated
checks for logical consistency and auto-
mated generation of effective test suites.
Visual representations can contain rich
semantics that are hard to convey in words
alone. When used judiciously, they are of
great value as an aid to communication
among developers, especially when gener-
ated quickly, informally, and cheaply.

However, the idea that a system
should be completely modeled using UML
diagrams is of dubious value, if not out-
right harmful. The cost of developing
and maintaining an extensive set of UML
diagrams for a system far outweighs its
benefit. The UML has been justifiably
called a cartoon [7] in that it is not seman-
tically sufficient to address all the nuances
that must be communicated to a tester or
coder. Development teams find it far too
easy to expend indefinite effort on UML
diagrams of arbitrary detail without any
assurance that these diagrams connect to
implementation reality.

Code, on the other hand, accompa-
nied by tests, is a good model (an executable
model) for clearly and unambiguously
expressing system behavior in detail. The
UML is much better used sparingly to
capture only key classes and relationships,
and critical execution paths [8].

Experienced OO Guides
If you have not climbed a mountain
before, you should really bring a guide
who knows the slopes, unless you lust for
the thrill of danger. Similarly, a serious
OO development effort should really
have at least one, if not a few developers
with extensive OO experience. If no
expert is available, plan to iterate and
redesign quite a lot (as discussed above)
as your development team learns the
ropes, or expect to churn indefinitely dur-
ing integration and test, trying to patch a
fragile, naïve design.

Not surprisingly, teams using OO
design for the first time usually fall back
on familiar, non-OO patterns. Each
developer defines a large controlling class
for the developer’s area of responsibility
that is all function (a functoid) and encap-
sulates no data. The data is thinly
wrapped in other classes that contain
only the data and access operations
(datoids). This design is essentially func-
tionally oriented, only superficially struc-
tured into classes and objects.

Conclusion
The recommendations in this article are
not really new, but their descriptions here
contrasted with typical pitfalls seen in
government contracting may help you to
better understand how to apply them to
good effect.

OO design and evolutionary develop-
ment fit well together. Many of the pit-
falls discussed here are characteristic of
programs practicing waterfall-style
processes. Attaining the potential benefits
of OO development is more difficult in a
waterfall process. The introduction of
OO to an organization should change
both its development practices and the
designs it produces for systems. If an
organization makes only superficial
changes (draws more diagrams or uses a
different programming language) then
what was the point of changing to OO
development?u

References
1. Software Productivity Consortium.

“Object-Oriented Approach for
Software-Intensive Systems (OOA-
SIS).” SPC-2000001-MC. Herndon,
VA: SPC, 2000 <www.software.
org/membersonly/ooasis>.

2. Evans, Eric. Domain-Driven Design:

Tackling Complexity in the Heart of
Software. Addison-Wesley Profes-
sional, 2003.

3. Cockburn, Alistair. Writing Effective
Use Cases. Addison-Wesley Profes-
sional, 2000.

4. Foote, Brian and Joseph Yoder. “Big
Ball of Mud.” Fourth Conference on
Patterns Languages of Programs,
Monticello, IL, Sept. 1997 <www.
laputan.org/mud/mud.html>.

5. U.S. Department of Defense. “DoD
5000 Series.” Washington: DoD, 2003
<http://akss.dau.mil/darc/darc.
html >.

6. Blackburn, Mark, Aaron Nauman,
Bob Busser, and Bryan Stensvad.
“Defect Identification with Model-
Based Test Automation.” Herndon,
VA: Software Productivity Consor-
tium, 2002 <www.software.org/pub/
taf/downloads/SAE_2003.pdf>.

7. Binder, Robert. Testing Object-
Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley Profes-
sional, 1999.

8. Ambler, Scott. Agile Modeling:
Effective Practices for eXtreme
Programming and the Unified
Process. John Wiley & Sons Canada,
Ltd., 2002.

About the Authors

Rich McCabe is a prin-
cipal member of the
technical staff at the
Systems and Software
Consortium (formerly
the Software Product-

ivity Consortium). McCabe co-authored
the consortium’s Object-Oriented
Approach to Software-Intensive Systems
(OOASIS) methodology. He also has
headed the consortium’s pioneering
work in the product-line approach for
systematic reuse since its inception in the
early 1990s. Outside the consortium, he
has nearly 15 years of software and sys-
tem development experience with Bell
Laboratories and other firms.

Systems and Software 
Consortium
2214 Rock Hill RD
Herndon,VA 20170-4227
Phone: (703) 742-7289
Fax: (703) 742-7200
E-mail: mccabe@systemsand

software.org

Michael Polen is a sen-
ior member of the tech-
nical staff at the Systems
and Software Consor-
tium (formerly the
Software Productivity

Consortium). He co-authored the
Consortium’s Object-Oriented Ap-
proach to Software-Intensive Systems
(OOASIS) methodology and consults
with consortium members on their
practice. Lately, Polen has been merg-
ing OOASIS with agile techniques. He
has more than 14 years of software and
system development experience with
Motorola, Booz, Allen and Hamilton,
and other firms.

Systems and Software 
Consortium
2214 Rock Hill RD
Herndon,VA 20170-4227
Phone: (703) 742-7281
Fax: (703) 742-7200
E-mail: polen@systemsand

software.org


